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Hydrodynamic model for surface nematic viscosity
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We propose a hydrodynamic model that justifies the surface viscosity already introduced as a phenomeno-
logical parameter in the surface dynamics of nematic liquid crystals. In this model the surface orienting field of
a substrate is assumed to bediluted in a thin boundary layer that is described by the balance equations of the
Ericksen-Leslie theory. A two-dimensional description is then recovered from this three-dimensional model: it
indicates the premises on which a general theory of surface dynamics could be developed.
@S1063-651X~98!09612-3#

PACS number~s!: 61.30.2v, 68.10.Et
ie
ta
sy
tio
lle
-

i
e

o-

:

co
e

u

g

ic

h
at

nt

by
e
his
ur-

the
the

ugh
at

ved
he
ical

-
ur-
e

y-

to
rba-

to
ric
es
es.

ial
ate
I. INTRODUCTION

Ordered systems exhibit interesting surface propert
some of which have been extensively studied, mostly in s
ics, such as wetting and surface segregation. In oriented
tems, such as magnets and liquid crystals, the orienta
also comes into play and the statics of what is usually ca
theanchoringis now fairly well understood, at least for nem
atic liquid crystals.

In a nematic liquid crystal, when the surface orientation
forced away from its spontaneous easy direction, the n
equilibrium configuration is classically described by intr
ducing an anchoring surface energy. Thestatics is then de-
scribed as the equilibrium of the torqueKs produced by the
surface and the torqueKa exerted by the disturbing action

Ks1Ka50.

Measurements of these torques have made it possible to
struct the surface potential. Regardless of its dependenc
the orientation, its strength is usually written asK/L, whereK
is a typical curvature elastic constant andL is the anchoring
extrapolation length: With K51026 dyn, L is found in the
range of a few hundred angstroms for strong anchorings
to a few micrometers for very weak anchorings.

The question of how to describe the anchoringdynamics
was indeed posed rather early: It was solved by introducin
phenomenologicalsurfaceviscosityl h, wherel is a length
and h a bulk viscosity. The phenomenological dynam
equation for a surface was written in the form

l h ns3ṅs5Ks1Ka , ~1!

whereṅs is the time derivative of the surface directorns ~see,
for instance,@1# and @2#!.

Many further questions could still be asked. What is t
dissipation mechanism behind the surface viscosity? Wh
the order of magnitude ofl ? Is l comparable toL, as con-
jectured in@3#, or are these lengths completely independe
PRE 591063-651X/99/59~4!/4137~6!/$15.00
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In this paper we attempt to answer these questions
proposing an explicit hydrodynamic model for both th
structure and the dynamics of a surface nematic layer. T
model relies on a three-dimensional description of the s
face anchoring effects, which are thought of asdiluted in a
thin boundary layer. Such a three-dimensional picture of
anchoring could be judged hazardous because we apply
macroscopic theory on a scale not necessarily large eno
relative to the molecular scale. We will show, however, th
a genuine two-dimensional model can actually be retrie
from it by integrating the evolution equations across t
boundary layer: We shall recover the phenomenolog
equation~1!, which thus becomes fully justified.

Assuming thath is comparable to the bulk rotational vis
cosity g1 , we obtain from recent measurements of the s
face viscosity@4# that l can be estimated to be in the rang
of 102 Å. With this estimate, by a purely dimensional anal
sis of Eq.~1!, we see that there should be asurfacerelaxation
time ts , which can be estimated by

1

ts
;

K

l Lh
,

and so it approximately falls into the range 1 – 10msec.
Since this is a very short time for liquid crystal dynamics,
observe any possible effect so fast we must use a pertu
tion with a frequency comparable to 1/ts . In practice, it is
usually more convenient to distort first the liquid crystal in
an equilibrium configuration by means of a static elect
field, which is then suddenly removed, leaving the torqu
unbalanced: Thus the distorted configuration freely relax
We will show, however, that in this setting, which is spec
though easily obtained in practice, the actual relaxation r
1/t is slower than 1/ts:

1

t
;

1

ts

l

L
,
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and so this relaxation is governed by the friction with t
bulk. In the more general case, there are physically adm
sible distortions that start relaxing at the faster rate 1/ts.

The plan of the paper is as follows. In Sec. II we descr
the model for a single three-dimensional layer, where
surface effects are diluted. In Sec. III we recall the class
Ericksen-Leslie theory to be applied in Sec. IV. In Sec. V
describe the static structure of the boundary layer and in S
VI its relaxation dynamics. Finally, in Sec. VII we summ
rize the main conclusions of this paper and the avenues
further work that it opens.

II. LAYER MODEL

Think of a nematic liquid crystal that occupies the h
space delimited by a plate~see Fig. 1!. Imagine that the
natural equilibrium configuration for the director fieldn has
been distorted, say, by applying an electric field, which w
strong enough to break the anchoring on the suppor
plate. Then the field is removed and the system starts re
ing freely towards equilibrium.

Here we study the onset in this relaxation process: It is
incipient motion of n in the vicinity of the supporting plate
just after the perturbing cause has been removed. In the
cinity of the plate, the director field is expected to rel
under the effect of the restoring torques exerted by the
choring substrate. Such a surface effect is thought of asdi-
luted in a thin boundary layer, whose thicknessh is much
smaller than theextrapolationlength L associated with the
anchoring on the plate. We also takeh to be larger than the
molecular scale so that the classic three-dimensional c
tinuum theory could still be applied within the bounda
layer.

The motion of the director entrains a hydrodynamic flo
After a short transient from the relaxation onset, a veloc

FIG. 1. Structure and dynamics of the boundary layer. In t
three-dimensional model, the surface orienting field isdiluted in a
boundary layer with thicknessh. The dashed line represents th
ideal planeS at the interface between the boundary layer and
bulk. The surface torques acrossS are those described in the usu
two-dimensional model. The solid curve represents the distor
effect in the bulk due to an external electric field with coheren
length jE . The easy anchoring of the plate isq50; qE is the
orientation forced in the bulk by the electric field. The slope of t
solid curve atz5h is ; qE /jE . The surface orientationqs is
supposed to be small and so the extrapolation lengthL is easily
related to it:qs; L/jE .
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field v is established in the half space, whose vorticity
mainly concentrated near the plate. This is indeed the m
feature of our model: the vorticity of the incipient velocit
essentially vanishes very close to the boundary. Thus
model cannot be applied long after the flow starts beca
the vorticity soon diffuses in the whole region occupied
the body. In some practical applications, however, whe
stable equilibrium configuration is being perturbed that co
coexist with others with the same elastic free energy,
initial velocity of n might indeed tell which of the other loca
minimizers will be approached after the perturbation ceas
Thus, without actually solving the dynamic equations f
bothn andv during the whole time evolution, we can say
what energy well the director will eventually be trappe
again. Bistable anchorings, for example, provide ideal ap
cations of our model.

In the next section, following both@5# and@6#, we review
the essential features of the Ericksen-Leslie theory in a fo
that is appropriate wherever a boundary layer embodie
surface effect in the dynamics of nematic liquid crystals.

III. BALANCE EQUATIONS

Here we assume that no body force acts on the liq
crystal and that the inertia associated with its motion is n
ligible. Under these assumptions, the balance laws for for
and torques can be given the point form

div T50, ~2!

k1Ks50, ~3!

whereT is thestress tensor, k is theinternal body torqueper
unit volume, andKs is the diluted surface torqueper unit
volume.

Both fieldsT andk comprise a static and a dynamic com
ponent: Their constitutive laws, which are now classic,
recalled below.Ks reflects our way of treating surface e
fects: It is a field that rapidly decays away from the suppo
ing plate and it already vanishes just beyond the heighth. It
could easily be related to a surface potential provided thi
also thought of as diluted in the boundary layer.

Let B be any region in space occupied by the liquid cry
tal. Ks can be derived from the potentialWs whenever the
power it expends can be classically expressed as the
derivative of the integral ofWs overB:

E
B
w•Ks5

d

dtS EBWs~n! D , ~4!

wherew is the absolute angular velocity ofn defined by

ṅ5w3n. ~5!

It follows from Eqs.~4! and ~5! that

E
B
w•Ks5E

B

]Ws

]n
•ṅ5E

B
w•n3

]Ws

]n
, ~6!

which is valid for every choice ofw. ThusKs can be written
as

s

e

g
e
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Ks5n3Hs , ~7!

where

Hsª
]Ws

]n
~8!

is the molecular fieldinduced by the surface.Hs is every-
where orthogonal ton and so it will be represented in th
form

Hs5Hsn' ,

with n' a unit vector orthogonal ton.
The stress tensorT can be split in theelasticstress tensor

T(e) and theviscousstress tensorT(v). They obey the con-
stitutive laws

T~e!52pI2~¹n!T
]W

]¹n
, ~9!

T~v !5a1~n•Dn!n^ n1a2v3n^ n1a3n^ v3n1a4D

1a5Dn^ n1a6n^ Dn, ~10!

wherep is a hydrostatic pressure raised by the incompre
ibility constraint,W5W(n,¹n) is the elastic free energy pe
unit volume,a1–a6 are Leslie’s viscosity coefficients,D is
the shear measure

Dª

1

2
@¹v1~¹v!T#, ~11!

and v is the angular velocity ofn relative to the observe
locally rotating with the fluid, which is formally defined by

vªw2V, ~12!

where

Vª

1

2
curlv

is the vorticity vector. Similarly, the torquek in Eq. ~3! is
composed of theelastic torquek(e) and theviscoustorque
k(v), which in the Ericksen-Leslie theory are given the for

k~e!5n3FdivS ]W

]¹nD2
]W

]n G , ~13!

k~v !52g1v2g2n3Dn, ~14!

where

g1ªa32a2

is the rotational viscosityand

g2ªa62a5 .

Finally, the energyD dissipated per unit volume by bot
viscous stresses and viscous torques can be expressed
s-

s

D5a1~n•Dn!212g2Dn•v3n1a4D•D

1~a51a6!Dn•Dn1g1v•v, ~15!

where also the Parodi relation

g25a31a2 ~16!

has been used.

IV. INCIPIENT DYNAMICS

We now apply the theory just recalled to determine t
incipient flow in the boundary layer described in Sec. II. L
the supporting plate be atz50 in the Cartesian frame wher
the unit vectors along thex, y, and z axes are denoted, re
spectively, bye, e' , andn. This plate is described as a plan
because here we envisage the ideal situation where no ro
ness is present at the molecular scale.

The velocity profile is chosen in the form

v5w~z!Ve, ~17!

whereV is a scalar parameter with the dimensions of a
locity andw is a function that satisfies theno-slip condition

w~0!50.

Both V and w are to be determined. Requiring the latter
satisfy

0<w~z!<1,

we can interpretuVu as themaximum velocityin the whole
profile.

With v as in Eq.~17!, D andV become

D5
1

2
w8V~e^ n1n^ e!,

V5w8
V

2
e' ,

where a prime denotes differentiation with respect toz. We
further taken as

n5cosq n1sinq e, ~18!

whereq is a function ofz only. Heren' is given by

n'5e'3n5cosq e2sinq n,

and so Eq.~7! becomes

K s5Hse' ,

whereHs is to be regarded as a function of bothq and z,
rapidly decreasing to zero forz.h.

Here for W we take the one-constant approximation
Frank’s elastic free energy density

W5
1

2
Ku¹nu2,
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whereK is a positive elastic modulus. Thus Eqs.~9! and~13!
deliver the following expressions forT(e) andk(e):

T~e!52pI2K~¹n!T~¹n! ~19!

and

k~e!5Kn3¹2n. ~20!

For n as in Eq.~18!

¹n5q8~2sinq n^ n1cosq e^ n!. ~21!

Similarly, Eqs.~20! and ~14! become

k~e!5Kq9e'

and

k~v !52g1w1u~g12g2cos 2q!e' ,

where we have set

uªw8
V

2
. ~22!

Thus, from Eq.~3! we read

w5w e' ,

with

wª

1

g1
$Kq91Hs1u~g12g2cos 2q!%. ~23!

On the other hand, since bothn andv depend only onz, Eq.
~2! becomes

div T5
]

]z
Tn50

and so

Tn5c, ~24!

wherec is a constant vector. This says that the traction is
same on each section parallel to the supporting plate.

Let ce be the component ofc along e. Using Eqs.~19!,
~11!, and~21!–~23!, we obtain from Eq.~24! that

e•Tn5 f ~q!u1~a2cos2q2a3sin2q!w5ce , ~25!

where

f ~q!ª2a1sin2qcos2q1a4

1~a52a2!cos2q1~a61a3!sin2q.

We now assume that bothu andw vanish in the limit as
z→`. Since thereHs50, this assumption amounts to requ
ing that

lim
z→`

w8~z!50, lim
z→`

q9~z!50. ~26!
e

The incipient motion is completely determined by Eqs.~23!
and ~25! with ce50. Using Eq.~16!, the solution to this
linear system can be given the form

w5
1

gs
~Kq91Hs!, ~27!

u5S g1

gs
21D Kq91Hs

g12g2cos 2q
, ~28!

where

gs~q!ªg12
2~a2cos2q2a3sin2q!2

f ~q!
~29!

is aneffectiveviscosity.
Though the most interesting consequences of Eqs.~27!

and ~28! will be drawn below for the boundary layer wher
the surface effects are diluted, they are valid in the wh
region occupied by the liquid crystal. In particular, th
former equation tells us that here thebackflowcan easily be
described as ifno flowwere present provided the rotation
viscosity g1 is replaced bygs , which depends on all othe
viscosity coefficients besides the orientation ofn.

We further show that the effective viscositygs obeys the
inequalities

0,gs<g1 ~30!

and so the backflow actually results in an effective reduct
of the rotational viscosity. To prove Eq.~30!, it suffices to
insert in Eq.~15! the fieldsn andv as in Eqs.~18! and~17!,
respectively; we thus obtain

D52 f ~q!u214~a2 cos2 q2a3 sin2 q!uw1g1w2.
~31!

It is easily seen that this quadratic form is positive defin
for all u andw provided

f ~q!.0, ~32a!

f ~q!g122~a2cos2q2a3sin2q!2.0 ~32b!

for all qP@0,p#. Using Eq.~29!, these inequalities imply
both those in Eq.~30!. They were already derived by Leslie
inequality ~32a! readily follows from a similar analysis per
formed in @7#, while ~32b! was first proved in@8#. Though
these inequalities have been exploited in several paper
the late 1970s~see, e.g.,@9# and@10#!, they do not seem to be
widely known.

The effective viscositygs equalsg1 only if q reaches the
angleqa of flow alignment, which is defined by

a2cos2qa2a3sin2qa50

and exists provideda2 anda3 have the same sign@5#. Since,
by virtue of the Parodi relation~16!,

22~a2cos2q2a3sin2q!5g12g2cos2q,

use of Eq.~29! in Eq. ~28! leads us to conclude thatu50 for
q5qa . Thus, if qa exists andq crosses this special value
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then the slope of the velocity profile changes sign, though
sign of the resulting torque remains the same.

V. LAYER STRUCTURE

Though we are mainly interested in dynamics, we a
need to know the static structure of the boundary la
through which the orienting effect of the surface is tran
ferred to the liquid crystal in the bulk. Formally, the sta
solutions are obtained by setting bothu andw equal to zero
in Eqs.~27! and~28!. Instead of finding a specific solution t
these equations, we rather describe the general qualita
features that all solutions must possess.

In the usual treatment of surfaces, the director is just
fined mathematically as a unit vector field assigned to a
face. Forn as in Eq.~18!, this would amount to defining a
single angleqs . Since here, however, we have imagined th
the surface field is diluted in a boundary layer, one m
question what is to play the role of the surface director. W
now show that for whatever dilution law of the surface fie
the director orientation is almost uniform within the boun
ary layer.

Our basic argument relies on the fact that just becaus
the dilution in the bulk of the surface potential, there is
localizedsurfaceanchoring on the plane of contact betwe
the liquid crystal and the active plate. Thus no localized s
face torque is transmitted through this plane of contact ei
and so in our model the normal gradient of the director m
vanish:

q8~0!50.

This implies the existence of a layer within which the dire
tor is uniform, though its thickness might well be differe
from h. The variation ofq within this layer is governed by
the contact curvatureq9(0). From Eq.~27! we see that

q9~0!52
Hs

K
;

1

Lh
,

independently of the specific dilution profile and for all re
sonable dilution laws for the surface field. At the distanceh
from the boundary where the surface field is supposed to
confined the variation ofq is expected to be

Dq.
1

2
q9~0!h2;

h

L
.

Since h/L !1, we can think ofq as almost constant pre
cisely within the boundary layer where the surface field
diluted. Thus all static solutions must exhibit a quas
uniform orientation within this boundary layer and so in o
model it corresponds to the usual two-dimensional surf
orientation.

VI. LAYER DYNAMICS

We now turn our attention to the dynamics of the boun
ary layer. As above, we will not solve a specific proble
which would imply specifying the dilution law; we rathe
attempt to derive the qualitative features common to all
lutions. To make sure that our model for a diluted surfa
e
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orientation is of any use, we must show that the almost u
form orientation in the boundary layer found in statics do
not get destroyed by the dynamics.

Now both w and u are different from zero and possibl
vary inside the boundary layer. Since the surface relaxa
might be quite fast, we imagine a class of problems wh
we start from an initial configuration that has been perturb
by the action of an external field. Physically, it is reasona
to assume that this field isuniformacross the boundary laye
with thicknessh. It might additionally be perturbed for in
stance by a dynamical disturbance. We instantaneously
move the field and we try to determine the incipient moti
in this layer. The torque densityKq91Hs in Eq. ~27! is now
unbalanced, but directly opposed to the torque density of
removed field. We discuss the incipient dynamics of t
boundary layer. Because the field was independent ofz and
q is almost constant within this layer,w is also so.

We can thus treat this layer as an individual whole a
integrate both Eqs.~27! and ~28! throughout it. We first ob-
tain

hgs~qs!w5Kqs81Hs , ~33!

where qs8ªq8(h) and Kqs8 is the elastic surface torqu
transmitted through the interface between the bulk and
surface layer, while

HsªE
0

`

Hsdz.E
0

h

Hsdz

is the usual surface torque exerted by the surface layer.
The left-hand side of Eq.~33! can also be written as

hgs~qs!q̇s ,

wherehgs is thesurface viscosity. Equation~33! was already
introduced phenomenologically in@1# and @2#: It is now be-
ing justified by this model. Here the phenomenologic
lengthl is shown to be equal to the extension lengthh of the
surface potential and the viscosityh is just the effective
viscositygs introduced above.

For the boundary layer we can now introduce asurface
relaxation timets that can be estimated by a simple dime
sional argument applied to Eq.~33!:

1

ts
;

K

gsLh
.

Is the real surface relaxation rate 1/t comparable to 1/ts

when we remove the applied field? The answer to this qu
tion obviously depends on whether it is possible to negl
Kqs8 in Eq. ~33! or, which is the same,Kq9 in Eq. ~27!. We
consider two classes of initial director profiles, one mo
common than the other. In the former, the profiles are
sumed to be in exact equilibrium with the applied fiel
whereas in the latter they are not. Both classes of profiles
expected to evolve in time towards the uniform orientati
dictated by the surface field.

In the first case, the curvature is not negligible in t
boundary layer: one can show that just because of the e
librium condition there is almost a compensation on t
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right-hand side of Eq.~27! between curvature and surfac
field. The surface relaxation rate 1/t is thus found to be of
the orderK/gsL

2, which is slower than 1/ts by the ratio
h/L. This is in fact the relaxation rate of the bulk curvatu
created by the applied field over the coherence lengthjE

;L. The physical meaning of this compensation is just t
because the surface could intrinsically relax faster, it c
adjust itself quasi-adiabatically to the edge of the diffus
bulk profile.

We now imagine that the initial orientation is not exac
in equilibrium with the applied field by the action of som
dynamical disturbance. We further consider the whole cl
of initial profiles that obey the conditionq8(0)50 and are,
for instance, flatter than the equilibrium profile forz;h. In
this case,Kqs8 is indeed negligible at the initial time, as
Kqs8 in Eq. ~33!, and so we can expect 1/t to be comparable
to 1/ts for the incipient motion. One can conjecture th
during the short time lapsets the curvatureq9 builds up for
the profile to match the boundary orientation with the alm
steady curvature in the bulk. Eventually, the director pro
will look like the one in the above adiabatic regime with t
slower relaxation rate 1/t;K/gsL

2. The amplitude of the
faster component in the relaxation clearly depends on
amplitude of the initial equilibrium profile.

To describe more accurately the surface relaxation,
would need to go into more analytical detail, which will for
the subject of a future paper, where we shall also disc
both the direct and inverse effects of surface backflow. Th
effects have actually been proposed to explain the obse
coupling between two surface anchoring bifurcations in t
nematic cells@11#: Also, a numerical study is presently und
way @12#.

VII. CONCLUSION

Using a three-dimensional model where the surface
enting field is first diluted in a thin boundary layer and th
attributed to an ideal plane, we have shown that the phen
enological surface viscosity rests indeed on firm ground
our model, the surface dissipation comes only from the
t
n
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t

t

e

e

ss
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ed
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-
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rector rotation and the associated backflow close to
boundary. Strictly speaking, for this model to be valid, t
thicknessh of the boundary layer should be large compar
to the molecular scalea. Because we have assumedL to be
larger thanh, our model would in fact only be applicable t
weak anchorings. In practice, the extension depth of the
face field could be comparable toa. This should make one
question the validity of our detailed description of the boun
ary layer, but, in our opinion, integrating over the lay
would still make sense and lead to the same conclusions

Experimentally,h is in the range of 100 Å and so it i
comparable to the coherence length of the nematic-isotro
transition, which is traditionally regarded as a macrosco
length. Thath is indeed a macroscopic length can also
explained in other ways. There are several other source
dissipation, which have been disregarded in our model. F
the bounding plate could be mechanically rough and so
flow would also have tangential gradients. Second, the e
orientation of the director could vary along the plate, es
cially if this is rough. Third, the order parameter, as well
the composition of the liquid crystal, could vary in spac
and so on. All these nonuniformities should contribute to
dissipation in the boundary layer. It would be an interest
but possibly difficult task to separate experimentally ea
contribution: We can just say that our model for the ide
uniform ordering gives the minimum possible value for t
surface viscosity. It could well be that in the experime
performed in@4# the main contribution to the surface visco
ity came indeed from one of these additional mechanis
and so this measurement ofh would just be an upper boun
for the unknown but possibly shorter extension of the surf
forces in the bulk.
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