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Hydrodynamic model for surface nematic viscosity
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We propose a hydrodynamic model that justifies the surface viscosity already introduced as a phenomeno-
logical parameter in the surface dynamics of nematic liquid crystals. In this model the surface orienting field of
a substrate is assumed to dikuted in a thin boundary layer that is described by the balance equations of the
Ericksen-Leslie theory. A two-dimensional description is then recovered from this three-dimensional model: it
indicates the premises on which a general theory of surface dynamics could be developed.
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[. INTRODUCTION In this paper we attempt to answer these questions by
proposing an explicit hydrodynamic model for both the
Ordered systems exhibit interesting surface propertiesstructure and the dynamics of a surface nematic layer. This
some of which have been extensively studied, mostly in statmodel relies on a three-dimensional description of the sur-
ics, such as wetting and surface segregation. In oriented syface anchoring effects, which are thought ofdilsited in a
tems, such as magnets and liquid crystals, the orientatiothin boundary layer. Such a three-dimensional picture of the
also comes into play and the statics of what is usually calle@nchoring could be judged hazardous because we apply the
theanchoringis now fairly well understood, at least for nem- macroscopic theory on a scale not necessarily large enough
atic liquid crystals. relative to the molecular scale. We will show, however, that
In a nematic liquid crystal, when the surface orientation isa genuine two-dimensional model can actually be retrieved
forced away from its spontaneous easy direction, the nedrom it by integrating the evolution equations across the
equilibrium configuration is classically described by intro- boundary layer: We shall recover the phenomenological
ducing an anchoring surface energy. Tdtaticsis then de- equation(1), which thus becomes fully justified.
scribed as the equilibrium of the torqu€ produced by the Assuming thaty is comparable to the bulk rotational vis-
surface and the torqui, exerted by the disturbing action: cosity y,, we obtain from recent measurements of the sur-
face viscosity{4] that/ can be estimated to be in the range
Ko+ K,=0. of 10? A. With this estimate, by a purely dimensional analy-
sis of Eq.(1), we see that there should beafacerelaxation

Measurements of these torques have made it possible to coliM€ 7s, which can be estimated by

struct the surface potential. Regardless of its dependence on

the orientation, its strength is usually writtenk& , whereK 1 K

is a typical curvature elastic constant dnds the anchoring Il

extrapolation lengthWith K=107% dyn, L is found in the s /L7y’

range of a few hundred angstroms for strong anchorings up

to a few micrometers for very weak anchorings. i i i
The question of how to describe the anchorihgamics &nd So it approximately falls into the range 1-1Gec.

was indeed posed rather early: It was solved by introducing £INC€ this is a very short time for liquid crystal dynamics, to

phenomenologicaurfaceviscosity/ 5, where/ is a length observe any possible effect so fast we must use a perturba-

and » a bulk viscosity. The phenomenological dynamiction with a frequency comparable to1/ In practice, it is
equation for a surface was written in the form usually more convenient to distort first the liquid crystal into

an equilibrium configuration by means of a static electric
7 . field, which is then suddenly removed, leaving the torques
/N XNs=Ks+1Cy, @ unbalanced: Thus the distorted configuration freely relaxes.
We will show, however, that in this setting, which is special

whereny is the time derivative of the surface directar(see, though easily obtained in practice, the actual relaxation rate
for instance[1] and[2]). 1/7 is slower than 14
Many further questions could still be asked. What is the
dissipation mechanism behind the surface viscosity? What is ,‘
the order of magnitude of ? Is/ comparable td., as con- 117
jectured in[3], or are these lengths completely independent? T 71 L’
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9 field v is established in the half space, whose vorticity is
: mainly concentrated near the plate. This is indeed the main
feature of our model: the vorticity of the incipient velocity
essentially vanishes very close to the boundary. Thus this
model cannot be applied long after the flow starts because
the vorticity soon diffuses in the whole region occupied by
the body. In some practical applications, however, when a
stable equilibrium configuration is being perturbed that could
coexist with others with the same elastic free energy, the
- initial velocity of n might indeed tell which of the other local
— minimizers will be approached after the perturbation ceases.
Se—— z Thus, without actually solving the dynamic equations for
bothn andv during the whole time evolution, we can say in
FIG. 1. Structure and dynamics of the boundary layer. In thiswhat energy well the director will eventually be trapped
three-dimensional model, the surface orienting fieldilstedin a ~ again. Bistable anchorings, for example, provide ideal appli-
boundary layer with thicknesk. The dashed line represents the cations of our model.
ideal planeS at the interface between the boundary layer and the In the next section, following botfb] and[6], we review
bulk. The surface torques acraSare those described in the usual the essential features of the Ericksen-Leslie theory in a form
two-dimensional model. The solid curve represents the distortinghat is appropriate wherever a boundary layer embodies a

effect in the bulk due to an external electric field with coherencesyrface effect in the dynamics of nematic liquid crystals.
length é&g. The easy anchoring of the plate &=0; J¢ is the

orientation forced in the bulk by the electric field. The slope of the

solid curve atz=h is ~ 9g/ég. The surface orientatior is Ill. BALANCE EQUATIONS

supposed to be small and so the extrapolation lehgts easily Here we assume that no body force acts on the liquid

related to it:9s~ L/&e. crystal and that the inertia associated with its motion is neg-
ligible. Under these assumptions, the balance laws for forces

and so this relaxation is governed by the friction with theand torques can be given the point form

bulk. In the more general case, there are physically admis-

sible distortions that start relaxing at the faster rate,1/ divT=0, 2
The plan of the paper is as follows. In Sec. Il we describe
the model for a single three-dimensional layer, where the k+Ks=0, ©)

surface effects are diluted. In Sec. Ill we recall the classical

Ericksen-Leslie theory to be applied in Sec. IV. In Sec. V weWhereT is thestress tensgk is theinternal body torqueper

describe the static structure of the boundary layer and in Seé&hnit volume, andK; is the diluted surface torqueper unit

VI its relaxation dynamics. Finally, in Sec. VIl we summa- vVolume.

rize the main conclusions of this paper and the avenues for Both fieldsT andk comprise a static and a dynamic com-

further work that it opens. ponent: Their constitutive laws, which are now classic, are
recalled belowKjg reflects our way of treating surface ef-
fects: It is a field that rapidly decays away from the support-

Il. LAYER MODEL ing plate and it already vanishes just beyond the hetglit
. L . could easily be related to a surface potential provided this is
Think of a nematic liquid crystal that occupies the half also thought of as diluted in the boundary layer.

space delimited by a platésee Fig. 1 Imagine that the S X - i
natural equilibrium configuration for the director fiatddhas Let 5 be any region in space occupu_ed by the liquid crys
tal. K; can be derived from the potentisl/s whenever the

been distorted, say, by applying an electric field, which was ; : .
strong enough to break the anchoring on the supportinéower It expend_s can be classmally expressed as the time
plate. Then the field is removed and the system starts rela lerivative of the integral oW over 5:
ing freely towards equilibrium. d
Here we study the onset in this relaxation process: It is the f W- Ks=—( f Ws(n))a (4
incipient motion of n in the vicinity of the supporting plate, B dtl Js
just after the perturbing cause has been removed. In the vi- ) ) ]
cinity of the plate, the director field is expected to relaxWherew is the absolute angular velocity afdefined by
under the effect of the restoring torques exerted by the an- _
choring substrate. Such a surface effect is thought afias n=wxn. )
luted in a thin boundary layer, whose thicknessis much
smaller than theextrapolationlength L associated with the It follows from Egs.(4) and(5) that
anchoring on the plate. We also takeo be larger than the

molecular scale so that the classic three-dimensional con- fW-K :f &WS_h:f W-N% IWs (6)
tinuum theory could still be applied within the boundary B ° Json B an’
layer.

The motion of the director entrains a hydrodynamic flow.which is valid for every choice ofv. ThusKg can be written
After a short transient from the relaxation onset, a velocityas
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Ks=nXHys, 7) D=a;(n-Dn)%+2y,Dn- @Xn+a,D-D
where +(as+ aG) Dn-Dn+ y - w, (15
AW, where also the Parodi relation
Ho=—1 ®
Yo=aztap (16)

is the molecular fieldinduced by the surfaced, is every-
where orthogonal ten and so it will be represented in the
form

has been used.

IV. INCIPIENT DYNAMICS

Hs=Hsn,, We now apply the theory just recalled to determine the

incipient flow in the boundary layer described in Sec. Il. Let
the supporting plate be at=0 in the Cartesian frame where
the unit vectors along thg, y, andz axes are denoted, re-
spectively, bye, e, , andw. This plate is described as a plane
because here we envisage the ideal situation where no rough-
ness is present at the molecular scale.

with n, a unit vector orthogonal to.

The stress tensdr can be split in theslasticstress tensor
T(® and theviscousstress tensof "), They obey the con-
stitutive laws

T®=—pl —(Vn)T$ (9) The velocity profile is chosen in the form
avn’
v=(2)Ve, (17
T =a(n-DN)N@N+ a,@X NN+ agn® wX n+ a,D
whereV is a scalar parameter with the dimensions of a ve-
+asDn®n+ agn®@Dn, (10 Jocity and ¢ is a function that satisfies theo-slip condition
wherep is a hydrostatic pressure raised by the incompress- ¢(0)=0.

ibility constraint, W=W(n,Vn) is the elastic free energy per
unit volume, a;—ag are Leslie’s viscosity coefficient§) is Both V and ¢ are to be determined. Requiring the latter to
the shear measure satisfy

1 O=¢p(2)<1,
De=5[Vv+(VW)], (11) #(2)
we can interpretV| as themaximum velocityn the whole

and e is the angular velocity oh relative to the observer Profile. _
locally rotating with the fluid, which is formally defined by ~ With v as in Eq.(17), D and Q become

o 1
w:=w—Q, (12 D=§¢’V(e®v+v®e),
where
1 a-¢'
= —e y
Q==§ curlv v

. o o ) . where a prime denotes differentiation with respect.tVe
is the vorticity vector. Similarly, the torquk in Eq. (3) is  fyrther taken as

composed of thelastic torque k!® and theviscoustorque

k®), which in the Ericksen-Leslie theory are given the form n=cosy v+sind g, (18
[ OW)  dW where ¥ is a function ofz only. Heren, is given b
k®=nx|div| —=—| — —|, (13 y 1150 y
avn an )
n, =e Xn=cosy e—sind v,
(U): — — X
K Y10~ y2nXDn, (14) and so Eq(7) becomes

where K.=H.e, .

YIEdsT %2 whereHg is to be regarded as a function of bothand z,
is the rotational viscosityand rapidly decreasing to zero far>h.

Here for W we take the one-constant approximation to

Vo= ag— as. Frank’s elastic free energy density

Finally, the energyD dissipated per unit volume by both 1 2
. : W= -K]|Vn|?,

viscous stresses and viscous torques can be expressed as 2
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whereK is a positive elastic modulus. Thus E¢8) and(13)
deliver the following expressions fai® andk(®:
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The incipient motion is completely determined by E{3)
and (25) with c,=0. Using Eq.(16), the solution to this

linear system can be given the form

T®=—pl—K(Vn)T(Vn) (19
1
and W= _(K”&”"_HS), (27)
Vs
(e) — 2
k KnXxVen. (20) Y1 KQ?""‘HS
_ u=|>=-1]—-—=o, (28)
Forn as in Eq.(18) Vs Y1~ Y2C0S 20
Vn=19'(—sind v®v+cosd ex v). (21)  where
Similarly, Egs.(20) and(14) become o 2(ar,c0S Y — agsint )
’)/S( /ﬂ) =71 f('l?) (29)
is an effectiveviscosity.
and Though the most interesting consequences of E2j8.
) and (28) will be drawn below for the boundary layer where
K = —y,w+u(y,— y,cos 29)e, , the surface effects are diluted, they are valid in the whole
region occupied by the liquid crystal. In particular, the
where we have set former equation tells us that here thackflowcan easily be
Vv described as ifio flowwere present provided the rotational
U=g'=. (22) viscosity vy, is replaced byys, which depends on all other
2 viscosity coefficients besides the orientationnof
We further show that the effective viscosiyy obeys the
Thus, from Eq.(3) we read inequalities
W=wWe, . 0<ys=<7 (30)
with and so the backflow actually results in an effective reduction
1 of the rotational viscosity. To prove E¢30), it suffices to
_ " insert in Eq.(15) the fieldsn andv as in Eqs(18) and(17),
= +Hgs+ - . . .
W yl{Kﬂ Hatu(y,=y,c0820)} 23 respectively; we thus obtain

D=2f(9)U’+4(ap cOS I — ag Si F)uw+ y;w2.
(39

On the other hand, since bathandv depend only orz, Eq.
(2) becomes

J It is easily seen that this quadratic form is positive definite
divT= ETVZO for all u andw provided
>
and so f(9)>0, (329
— _ H 2
Te=c, (24 f(9) y1—2( @089 — agsinf®)?>0 (32b

for all 9e[0,7]. Using Eq.(29), these inequalities imply
%oth those in Eq(30). They were already derived by Leslie:
inequality (329 readily follows from a similar analysis per-
formed in[7], while (32b) was first proved i 8]. Though
these inequalities have been exploited in several papers in
the late 1970¢see, e.g.,9] and[10]), they do not seem to be
widely known.

The effective viscosityys equalsy; only if 9 reaches the
angle ¥, of flow alignmentwhich is defined by

wherec is a constant vector. This says that the traction is th
same on each section parallel to the supporting plate.

Let c, be the component of alonge. Using Eqgs.(19),
(11), and(21)—(23), we obtain from Eq(24) that

e Tr="f(9)u+(a,cofd— azsifd)w=c,, (25

where
f(9):=2a;SiPdcosI+ a,

,C0S ¥, — azSirt9,=0
+ (ag— ay)CoL I+ (ag+ ag)sinfd.
and exists provided, and a3 have the same sid®]. Since,
We now assume that bothandw vanish in the limit as by virtue of the Parodi relatiofil6),
z—oo. Since therdH =0, this assumption amounts to requir-

ing that —2(@,CO0SL Y — agsintd) =y, — ¥,C0829,

use of Eq.(29) in Eq. (28) leads us to conclude that=0 for
U= 39,. Thus, if 9, exists andd crosses this special value,

lime’(z)=0,

z—»

limd"(z)=0.

Z—®

(26)
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then the slope of the velocity profile changes sign, though therientation is of any use, we must show that the almost uni-

sign of the resulting torque remains the same. form orientation in the boundary layer found in statics does
not get destroyed by the dynamics.
V. LAYER STRUCTURE Now bothw andu are different from zero and possibly

o ) ) vary inside the boundary layer. Since the surface relaxation

Though we are mainly interested in dynamics, we alsomight be quite fast, we imagine a class of problems where
need to know the static structure of the boundary layekye start from an initial configuration that has been perturbed
through which the orienting effect of the surface is trans-py the action of an external field. Physically, it is reasonable
ferred to the liquid crystal in the bulk. Formally, the static 1o assume that this field isiformacross the boundary layer
solutions are obtained by setting battandw equal to zero  jith thicknessh. It might additionally be perturbed for in-
in Egs.(27) and(28). Instead of finding a specific solution to stance by a dynamical disturbance. We instantaneously re-
these equations, we rather describe the general qualitativfove the field and we try to determine the incipient motion
features that all solutions must possess. o in this layer. The torque densid”+ Hg in Eq. (27) is now

In the usual treatment of surfaces, the director is just deynpalanced, but directly opposed to the torque density of the
fined mathematically as a unit vector field assigned to a Sutremoved field. We discuss the incipient dynamics of the
face. Forn as in Eq.(18), this would amount to defining a poundary layer. Because the field was independemtafd
single angleds. Since here, however, we have imagined thaty is almost constant within this layew is also so.
the surface field is diluted in a boundary layer, one may e can thus treat this layer as an individual whole and

question what is to play the role of the surface director. Wentegrate both Eqg27) and (28) throughout it. We first ob-
now show that for whatever dilution law of the surface field, tajn

the director orientation is almost uniform within the bound-
ary layer. hys(dw=Kds+Hs, (33

Our basic argument relies on the fact that just because of
the dilution in the bulk of the surface potential, there is nowhere 9¢:=9'(h) and K9, is the elastic surface torque
localizedsurfaceanchoring on the plane of contact betweentransmitted through the interface between the bulk and the
the liquid crystal and the active plate. Thus no localized sursurface layer, while
face torque is transmitted through this plane of contact either

and so in our model the normal gradient of the director must * h
vanish: ? Hs’=f Hsdzzf Hsdz
. 0 0

9'(0)=0. is the usual surface torque exerted by the surface layer.

This implies the existence of a layer within which the direc- The left-hand side of Eq33) can also be written as

tor is uniform, though its thickness might well be different
from h. The variation ofd within this layer is governed by
the contact curvature”(0). From Eq.(27) we see that

hys( ) Js,

whereh v, is thesurface viscosityEquation(33) was already

H 1 introduced phenomenologically 1] and[2]: It is now be-
9"(0)=— L ing justified by this model. Here the phenomenological
K Lh length/ is shown to be equal to the extension lentf the

surface potential and the viscosity is just the effective
viscosity y, introduced above.

For the boundary layer we can now introducswaface
axation timerg that can be estimated by a simple dimen-
sional argument applied to E(B3):

independently of the specific dilution profile and for all rea-
sonable dilution laws for the surface field. At the distahce

from the boundary where the surface field is supposed to bFeI
confined the variation of} is expected to be

1 h
~ _ qnr 2__ 1 K
AY 219(O)h O

s  7ysLh’

Sinceh/L <1, we can think of as almost constant pre- |5 the real surface relaxation rateLéomparable to 1,

cisely within the boundary layer where the surface field is, Lo we remove the applied field? The answer to this ques-

d"%}ted' Thust atl_l Sta.t;f]. Sfr:‘ﬂ“gr‘s (TUStI eXh'b'tda Quast™ ion obviously depends on whether it is possible to neglect
uniform orientation within this boundary layer and so in °“rKag in Eq. (33) or, which is the same&K 9" in Eq. (27). We
model it corresponds to the usual two-dimensional surface S. o X )

Consider two classes of initial director profiles, one more

orientation. common than the other. In the former, the profiles are as-
sumed to be in exact equilibrium with the applied field,
whereas in the latter they are not. Both classes of profiles are
We now turn our attention to the dynamics of the bound_eXpeCted to evolve in time towards the uniform orientation
ary layer. As above, we will not solve a specific problem,dictated by the surface field.
which would imply specifying the dilution law; we rather  In the first case, the curvature is not negligible in the
attempt to derive the qualitative features common to all soboundary layer: one can show that just because of the equi-
lutions. To make sure that our model for a diluted surfacdibrium condition there is almost a compensation on the

VI. LAYER DYNAMICS
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right-hand side of Eq(27) between curvature and surface rector rotation and the associated backflow close to the
field. The surface relaxation rate 4 is thus found to be of boundary. Strictly speaking, for this model to be valid, the
the orderK/y,L2, which is slower than 1 by the ratio thicknessh of the boundary layer should be large compared
h/L. This is in fact the relaxation rate of the bulk curvature {0 the molecular scala. Because we have assumedo be
created by the applied field over the coherence lerigth larger thanh, our model would in fact only be applicable to

_ ; ; ; L eak anchorings. In practice, the extension depth of the sur-
L. The physical meaning O.f th.'s gompensatlon IS jUS.t tha#I\ajlce field could be comparable & This should make one
because the surface could intrinsically relax faster, it can

ST R . '~ question the validity of our detailed description of the bound-
ES{ES;rg?i?elf quasi-adiabatically to the edge of the dIﬁus'ngary layer, but, in our opinion, integrating over the layer

, ) o ) L would still make sense and lead to the same conclusions.
_ We now imagine that the_ |n|t|_al orientation is not exactly Experimentally,h is in the range of 100 A and so it is
in equilibrium with the applied field by the action of some comparaple to the coherence length of the nematic-isotropic
dynamical disturbance. We further consider the whole clasgansition, which is traditionally regarded as a macroscopic
of initial profiles that obey the conditioft’(0)=0 and are, |ength. Thath is indeed a macroscopic length can also be
for instance, flatter than the equilibrium profile for-h. In explained in other ways. There are several other sources of
this caseK 9, is indeed negligible at the initial time, as is dissipation, which have been disregarded in our model. First,
K9, in Eq.(33), and so we can expect o be comparable the bounding plate could be mechanically rough and so the
to 1/74 for the incipient motion. One can conjecture that flow would also have tangential gradients. Second, the easy
during the short time lapse, the curvatured” builds up for  orientation of the director could vary along the plate, espe-
the profile to match the boundary orientation with the almostially if this is rough. Third, the order parameter, as well as
steady curvature in the bulk. Eventually, the director profilethe composition of the liquid crystal, could vary in space,
will look like the one in the above adiabatic regime with the and so on. All these nonuniformities should contribute to the
slower relaxation rate T~K/vy,L2. The amplitude of the dissipation in the boundary layer. It would be an interesting
faster component in the relaxation clearly depends on th8ut possibly difficult task to separate experimentally each
amplitude of the initial equilibrium profile. contnbuuon: We can just say Fhat our quel for the ideal
To describe more accurately the surface relaxation, w&lniform ordering gives the minimum possible value for the
would need to go into more analytical detail, which will form Surface viscosity. It could well be that in the experiment
the subject of a future paper, where we shall also discusgerformed_ in4] the main contribution to t_h_e surface VISCOS-
both the direct and inverse effects of surface backflow. Thesgy came .|ndeed from one of thesg additional mechanisms,
effects have actually been proposed to explain the observ d so this measurement Iofwould just be an upper bound
; : . . - . for the unknown but possibly shorter extension of the surface
coupling between two surface anchoring bifurcations in thmforces in the bulk
nematic cell§11]: Also, a numerical study is presently under ’
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